9th EuroGOOS International Conference 3-5 May, online

Entering in the BGC-Argo era: improvements of the Mediterranean Sea biogeochemical operational system

<u>Laura Feudale</u>, Gianpiero Cossarini, Giorgio Bolzon, Paolo Lazzari, Cosimo Solidoro, Anna Teruzzi , Elena Terzic, Stefano Salon

OGS – National Institute of Oceanography and Applied Geophysics

BGC Argo in the Med Sea biogeochemical operational system

OUTLINE:

CMEMS Mediterranean Sea monitoring and forecast centre (Med-MFC): the BIOGEOCHEMISTRY unit (MED-BIO)

BGC-Argo Floats in MED-BIO

- ***** NRT Quality Control at OGS
- ***** Operational validation framework:
 - monitor model skill
 - multivariate metrics assessing uncertainty in physicalbiogeochemical processes

New perspectives in model validation

BGC Argo in the Med Sea biogeochemical operational system

Med-MFC overview

CMEMS MEDITERRANEAN SE/ MFC

> ct CMEMS MFC ME til 31 March 2021

BGC Argo in the Med Sea biogeochemical operational system

CMEMS IEDITERRANEAN SE

Entering in the BGC Argo Era in the Med Sea

BGC Argo float: a multivariate observation dataset

- Chlorophyll (Chla) ٠
- Oxygen (O2) ۰
- Nitrate (N3n) •
- Biomass of Phytoplancton (PhytoC) \rightarrow retrived ٠ from Bbp700 using Bellacicco et al. (2019)
- Chla N floats: 55 N profiles: 7465
- O2 N floats: 86 N profiles: 10559
- N3n N floats: 28 N profiles: 3779
- Bbp N floats: 60 N profiles: 9367

20

15

LON

25

30

TRAJECTORY of FLOATS 2013-2021

35

CMEM DITERRANEAN S

Entering in the BGC Argo Era in the Med Sea

COPERNICUS CMEMS MEDITERRANEAN SEA MFC COPERCE COMMON COMMON COPERCE COMMON COMMON COPERCE COMMON COMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON

BGC Argo float at NRT:

Every week (before the integration in the DA system) we have just few profiles

Entering in the BGC Argo Era in the Med Sea

BGC Argo float at NRT:

Every week (before the integration in the DA system) we have just few profiles, in RM or maybe AM.

=> How good are for operational purposes?

COPERNICUS

RONMENT MONITORING SERVICE

BGC Argo data Near Real Time QC at OGS

Chla NRT adjustment are already checked and implemented: Chla is the variable with the best QC

CMEMS MEDITERRANEAN SE

> act CMEMS MFC ME Intil 31 March 2021

BGC Argo data Near Real Time QC at OGS

Chla NRT adjustment are already checked and implemented: Chla is the variable with the best QC

\succ <u>O₂ check</u>

CMEMS MEDITERRANEAN SE

> tract CMEMS MFC MEI Until 31 March 2021

BGC Argo data Near Real Time QC at OGS

- Chla NRT adjustment are already checked and implemented: Chla is the variable with the best QC
- O₂ check + NO₃ correction procedure

CMEMS IEDITERRANEAN SE

ract CMEMS MFC MEI

As a result of our internal OGS QC...

DOXY: n. of original and ready-to-use profiles after OGS QC:

NITRATE

=> added value to standard Coriolis QC !!!

COPERNICUS

Validation Framework (PART 1): CHLA

Hovmoller diagram of **chlorophyll**: match-up of model results on the float trajectory

CMEMS MEDITERRANEAN SE MFC

Intil 31 March 2021

COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE

Validation Framework (PART 1): NO3

01.2019 03.2019 05.2019 07.2019 09.2019 11.2019

Metrics on vertical shape of **nitrate** profiles

CMEMS MEDITERRANEAN SE MFC Coomnous Common Contract CMEMS MFC MEI Until 31 March 2021

Validation Framework (PART 1): NO3

COPERNICUS

MARINE ENVIRONMENT MONITORING SERVICE

opernicus

HERCATOR OCEAN

Metrics on vertical shape of nitrate profiles

CMEMS MEDITERRANEAN SEA MFC

Until 31 March 2021

Validation Framework (PART 1): O2

Metrics on vertical shape of **oxygen** profiles

COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE

CMEMS MEDITERRANEAN SE MFC

> tract CMEMS MFC ME Until 31 March 2021

NOM TR

Validation Framework (PART 1)

Skill statistics (BIAS and **RMSD**) can be computed for <u>each metrics</u>, grouping profiles in <u>large sub-basins</u> for <u>robust statistics</u>

	Chl			PhyC	NO ₃		OXY	
	RMSD 0- 200m mean [mg/m ³]	RMSD DCM depth [m]	RMSD WBL depth [m]	RMSD 0- 200m mean [mgC/m ³]	RMSD 0- 200m mean [mmol/m ³]	RMSD NITRCL1 depth [m]	RMSD 0- 200m mean [mmol/m ³]	RMSD max O2 depth [m]
SWM	0.04	9	42	1.70	-	-	8.48	10
NWM	0.04	10	30	1.07	0.46	9	7.27	9
ION	0.03	27	18	0.52	0.26	11	3.18	25
LEV	0.02	17	17	0.43	0.32	36	7.93	5

CMEMS MEDITERRANEAN SE

tet CMEMS MFC ME

Omand & Mahadevan (2013), Ascani et al. (2013)

Validation Framework (PART 2): density NO3

2013-2021 float equipped with CTD sensors and NO3 sensors \rightarrow **nitrate-density** relations emerges from profile correlation index in different «sub-regions»

CMEMS EDITERRANEAN SE

CMEMS MEC M

Validation Framework (PART 2): density NO3

2013-2021 float equipped with CTD sensors and NO3 sensors \rightarrow **nitrate-density** relations emerges from profile correlation index in different «sub-regions»

SUMMER SEASON

Different regions host different robust dens/nitr vertical relationships

CMEMS EDITERRANEAN SE MFC

act CMEMS MEC ME

til 31 March 2021

Model is consistently reproducing the physical biogeochemical coupled dynamics in all sub-regions but mid-East

CONCLUSIONS:

AIM: to highlight the **benefits** of the introduction of the **high quality level dataset** the **BGC-Argo** network into the NRT MedBFM

- NRT MedBFM is a continually <u>evolving and improving</u> system (Cossarini et al. 2019, Lazzari et al. 2021, Teruzzi et al 2021 – submitted to BG)
- New SKILL METRICS framework (with respect to Salon et al. 2019) helps to track the model quality improvements:
 - NRT BGC Argo profiles QC at OGS;
 - a novel metrics framework is defined to evaluate emerging properties in BGC;
 - evaluation of the quality of the BGC variables values and the consistency of physical and BGC processes;
 - correlation metrics between nitrate and density at particular depths can be a promising validation technique in order to capture <u>the nature of the physical processes</u> which may influence the evolution of BGC processes as well

> PERSPECTIVES:

- **regional validation website MEDEAF (**<u>http://medeaf.inogs.it/</u>), complementing the CMEMS PRODUCT QUALITY DASHBOARD, as reliable monitoring system for quality checked forecast products
- identification of *relationship* between **density** and **nitrate** distribution in the vertical corroborated by previous studies

CMEMS EDITERRANEAN S