

9th EuroGOOS International Conference

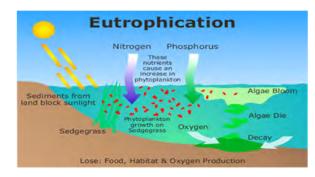
Advances in operational oceanography: Expanding Europe's ocean observing and forecasting capacity

Storm surge forecasting and predictability in the Goro lagoon (Italy)

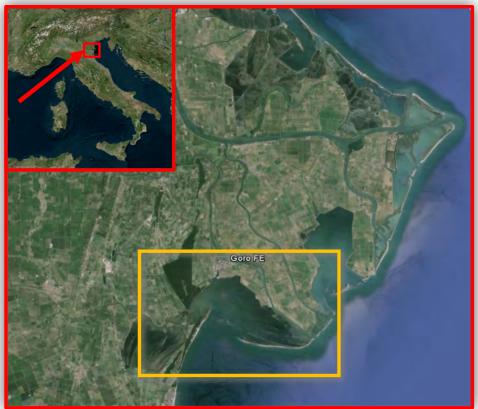
Breakout Session 4: Extreme Events and Hazard Forecasting

Jacopo Alessandri^(a,b), Ivan Federico^(c), Andrea Valentini^(b), Nadia Pinardi^(a,c)

^aDepartment of Physics and Astronomy, University of Bologna ^bAgency for Prevention, Environment and Energy of Emilia-Romagna, Arpae ^cFoundation Centro EuroMediterraneo sui Cambiamenti Climatici, Bologna

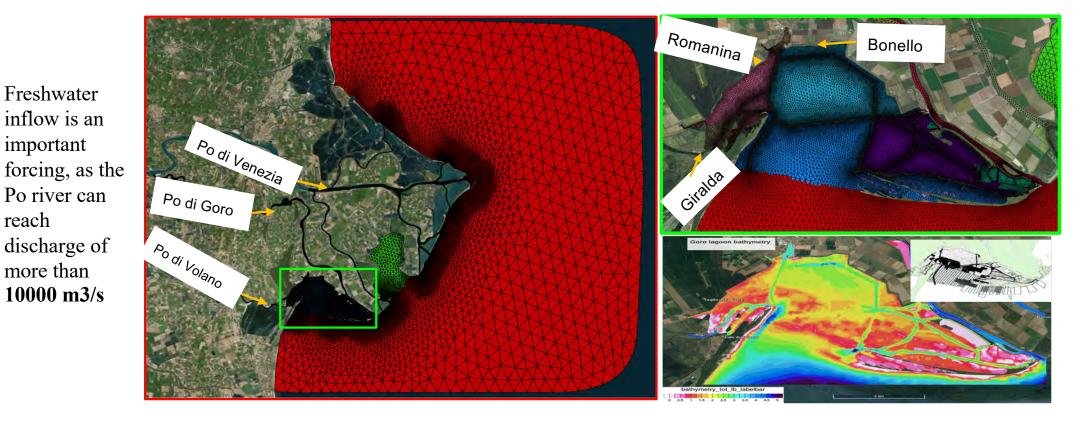


The Goro lagoon ecosystem

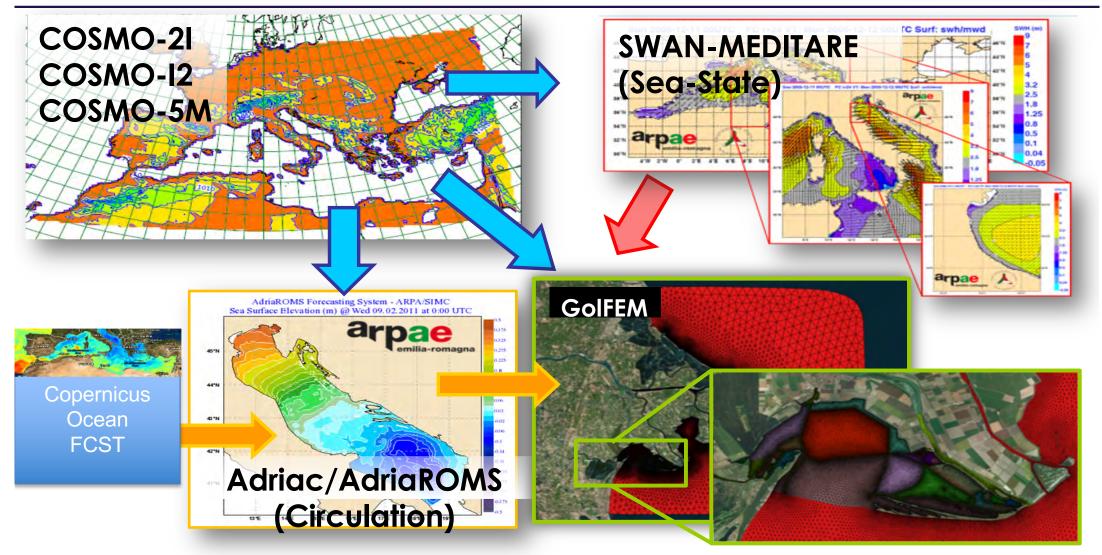


GOLFEM (Goro Lagoon Finite Element Model; Maicu et al., 2021) is the implementation of the SHYFEM model in the Goro lagoon developed at Arpae-SIMC with the contribution of the University of Bologna and the CNR-ISMAR.

- The Goro lagoon extend over an area of about 2,000 hectares, part of the Emilia-Romagna Po Delta Park, enclosed between two branches of the wide Delta of the Po river (Po of Goro and the Po of Volano).
- The main problems are connected to the eutrophication of the lagoon, threatening the clams farms, and inundation of the towns surrounding the lagoon.



Model set-up, grid domain and bathymetry



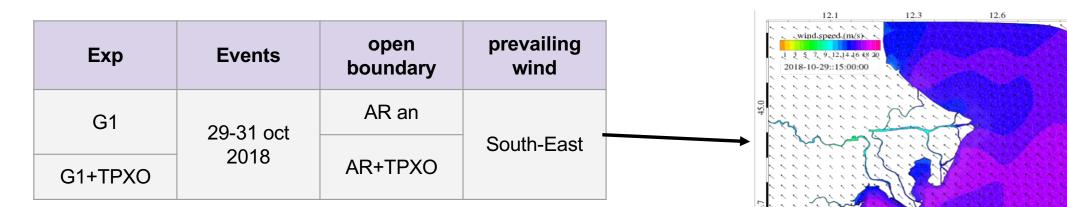
- **SHYFEM** (Shallow water HYdrodynamic Finite Element Model; Umgiesser et al., 2004) is a three-dimensional finite element model, that solves the primitive equations for the ocean under hydrostatic and boussinesq approximation.
- Unstructured grid approach on arakawa B-type grid triangular mesh (Bellafiore and Umgiesser, 2010; Ferrarin et al., 2013).

Forecasting chain nesting

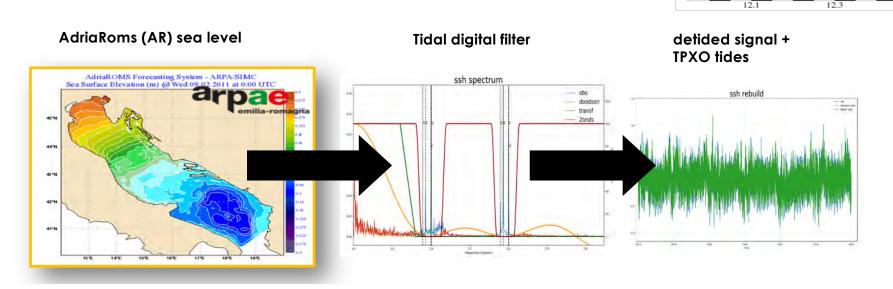
Selected storm surge events

Date	Tide Gauge max P. Garibaldi (time, m)	Tide Gauge max Faro Goro (time, m)	Impacts	Notes	State
08/12/2020	15:20 -> 1.23	15:50 -> 1.10	ferrarese	Venti E-SE	\checkmark
02/12/2020	09:20 -> 1.25	09:30 -> 0.93	Impatti diffusi	Venti N-NE	\checkmark
23/12/2019	08:40 -> 1.17	08:50 -> 1.21	Impatti diffusi	Venti NE	\checkmark
12/11/2019	20:50 -> 1.22	20:40 -> 1.15	Impatti diffusi	Venti NE	X
02/02/2019	22:50 -> 0.91	23:10 -> 0.85	Ferrarese ravenna	Venti ENE	X
29/10/2018	16:30 -> 1.06	14:50 -> 1.07	Ferrarese	Venti SE	\checkmark
18/03/2018	23:10 -> 1.14	23:10 -> 1.04	Ferrarese	Venti E-NE	Х
13/11/2017	09:00 -> 1.0	07:00 -> 0.70	Ferrarese	Venti NE	X
16/06/2016	18:40 -> 0.93	18:30 -> 0.88	Impatti diffusi	Venti SE	X
29/02/2016	02:50 -> 0.91	02:50 -> 0.88	Impatti diffusi	Venti E-NE	Х

Storm surge of the 29 october 2018

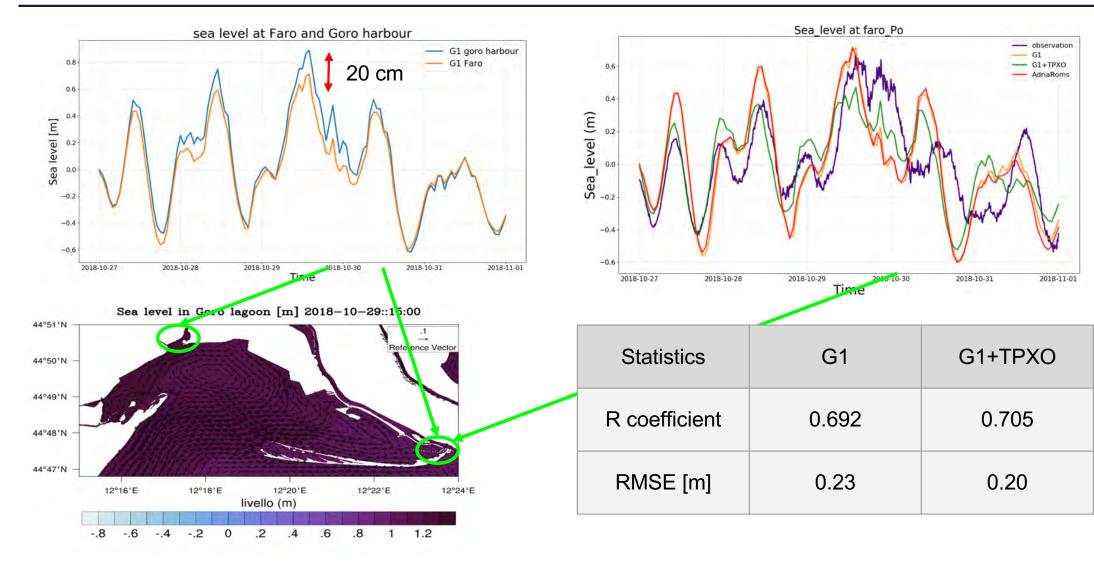


12.8


45.0

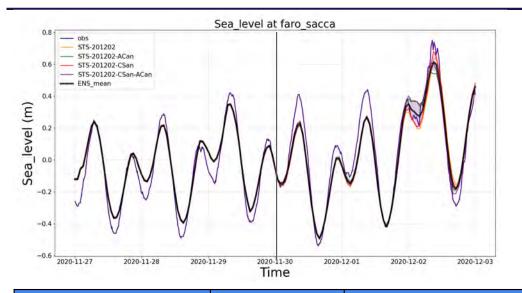
4

12.8



A "detiding" procedure is tested at the open boundaries input and tides from TPXO are added to the model

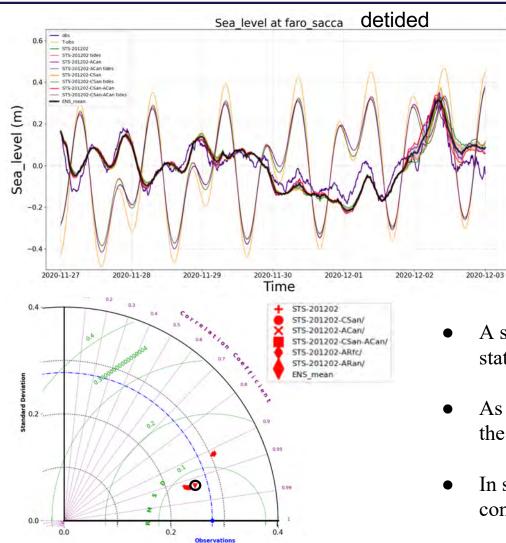
Storm surge of the 29 october 2018

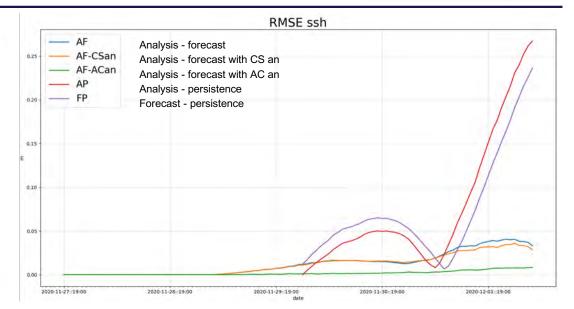

First studies for an ensemble forecasting system


Run name	Run description	Meteo Analysis	Meteo Forecast	Ocean Analysis	Ocean Forecast
STS-YYMMDD	3d SU + 3d FC	COSMO-2I from -3 to 0	COSMO-2I/5M from 0 to +3	Adriac from -3 to 0	Adriac from 0 to +3
STS-YYMMDD-CSan	meteo analysis	COSMO-2I from -3 to +3	-	Adriac from -3 to 0	Adriac from 0 to +3
STS-YYMMDD-ACan	ocean analysis	COSMO-2I from -3 to 0	COSMO-2I/5M from 0 to +3	Adriac from -3 to +3	-
STS-YYMMDD-CSan-ACan	analysis	COSMO-2I from -3 to +3	-	Adriac from -3 to +3	-
STS-YYMMDD-ARfc	3d SU + 3d FC with AdriaRoms	COSMO-2I from -3 to 0	COSMO-2I/5M from 0 to +3	AdriaRoms from -3 to 0	AdriaRoms from 0 to +3
STS-YYMMDD-ARan	ocean analysis (AdriaRoms)	COSMO-2I from -3 to 0	COSMO-2I/5M from 0 to +3	AdriaRoms from -3 to +3	-

Storm surge of the 2 december 2020

Name	Correlation R	RMSE (m)
STS-201202	0.965	0.084
STS-201202-ACan	0.970	0.077
STS-201202-CSan	0.966	0.081
STS-201202-CSan-ACan	0.969	0.076
ENS-mean	0.972	0.075


Adding AdriaRoms runs


Name	Correlation R	RMSE (m)
STS-201202-ARfc	0.951	0.103
STS-201202-ARan	0.951	0.100

ENS-mean	0.983	0.058
----------	-------	-------

Storm surge of the 2 december 2020

- A small ensamble simulation (6 members) is enough to show better statistics than single run (taylor plot and previous slide).
- As expected most of the uncertainties is concentrated at the peak of the extreme events
- In such a small domain uncertainties from lateral open boundary conditions may play an important role in sea level forecast.

- In a complex ecosystem such the goro lagoon a forecast system is of fundamental importance for the development of an adequate Early Warning System (EWS) for the prevention of flooding events.
- A calibrated and validated model as Golfem (Maicu et al. 2021) in cascade to the Arpae forecasting chain is a powerful tool for operational forecasting but **uncertainties from meteorological forcing and lateral open boundary conditions are the most important source of error**.
- An ensemble approach is used to assess the most important source of uncertainties in a small coastal domain. Lateral open boundary conditions have a fundamental role in the sea level forecast but uncertainties due to meteorological forcing will be assessed more accurately.
- The role of wave set-up contribution to the sea level will be assessed with the coupling of shyfem to a wind wave model (WaveWatch III).

Thank you !!!

Jacopo Alessandri PhD student

Department of Physics and Astronomy (DIFA) University of Bologna, Bologna, Italy

jacopo.alessandri2@unibo.it