

IMPROVING STORM SURGE AND WAVE FORECASTS FROM REGIONAL TO NEARSHORE SCALES

A. PASQUET, <u>H. MICHAUD</u>, L. SEYFRIED, R. BARAILLE, L. BISCARA, Y. KRIEN, D. JOURDAN

The challenge of marine flooding forecast

Swash Wave set-up Atnospheric surge High tides Low tides Mean sea level

Marine flooding processes

Shom expertise for marine risk assessment

Ocean observations

Tidal operational networks and databases Field campaigns

Bathymetry

Bathymetry acquisition and DEMs production

R&D and operational modelling capacities

2D/3D circulation models (Hycom, Croco) specific tides, surge and currents models (Hycom,Tolosa) Wave spectral models (Wavewatch III - WW3)

Tides and extreme levels analyses

Expertise in tidal signal analysis Extreme levels statistics (Storm events, long hindcasts analysis, Sea level rise)

Its mission of support to coastal public policies in flooding risk prevention :

Regional (HOMONIM/VVS, NIVEXT,...) Local initiatives (PAPI Saint-Malo, VIMERS...)

How to improve well-proven and operated tools to multiscale submersion forecast?

Well proven numerical tools and observations

Example of Atlantic coast capacities

Numerical modelling

HR regional configurations

- storm surge: curvilinear grid at ~500m/1km
- wave: unstructured grid at ~200/400 m nearshore, forced by current/elevation

THR local configurations

 coupled Wavewatch III
 ® and Hycom2D at ~30m

Simulations

- 40-years hindcast (HR-ERA5)
- Storm events (HR-MF, THR-Charentes and THR-Malo)

Observations

Sea Level network

RONIM : permanent digital coastal tide gauge network on the French coast

<u>Wave network</u>

CANDHIS : French National Wave Data Centre (CEREMA)

Networks of tide gauges (black circles) and wave buoys (blue triangle) (only instruments with more than 10 years of data are represented)

HR configuration & bathymetry with locations of THR grids (in red)

Storm Surge and Wave 40 years hindcast at regional scale

In : 40 years of regional Storm Surge and Wave Hindcasts : Application to coastal flood risks along the Atlantic French coast. Seyfried et al. (in progress)

Difference (in %) on the Hs (in triangle for wave buoys) and skew

Island)

Storm Surge and Wave modelling from regional to local scale

Xynthia storm in Pertuis Charentes (2010/02)

Described in Michaud et al., WHF 2015

Storm Surge and Wave modelling from regional to local scale

Eleanor storm in St Malo (2018/01)

Time series of elevation and surge (at St Malo tide gauge) and Hs at Bréhat buoy 02204 (north of St Malo)

Improving processes knowledge at local scale

Morpho-bathymetry and moorings positions in the Saint-Malo bay

0.20 0.15 10 0.10 0.05 0.00 2.5 2.0 3.0 35 09 05:00 09 05:30 09 06:00 09 06:30 09 07:00 09 07:30 09 08:00 09 08:30 09 09:00 $H_{m0}T1 - 2(m)$ Short Wave Infragravity Wave 2018-12 2019-01 2019-02 2019-03 2019-04 2019-05

0.30

0.25

s at T1-1 wave pressure gauge

In: Topo-bathymetric and oceanographic datasets for coastal flooding risk assessment : French Flooding Prevention Action Program of Saint-Malo. Seyfried et al. (in progress)

--- set-up

Perspectives : From flooding risk forecast to actual flooding assessment...

Ultra high resolution modelling

Improve nearshore processes modelling (IG waves, overflows, set-up/run-up, wave breaking ...)

TOLOSA : non structured shallow water model (Duran et al., 2020)

with a non-hydrostatic module (Richard, 2020) for explicit wave modelling

- UHR modelling at nearshore scales
- 2D/1D and river/sea dynamics (estuaries modelling)
- Overflow modelling with available topo/bathy data

Perspectives : From flooding risk forecast to actual flooding assessment...

The need of observations

Importance of in situ data :

- to calibrate/validate models but also
- to improve knowledge of the physical processes

As for numerical modelling, the need is at HR and THR scales :

- Dedicated in situ campaign
- Need of an "operational" densified network adapted for the surge measurements

The RiCoRé campaign (winter 2020-2021) at Ré Island (Moorings of some of the 32 pressure sensors installed on Ars en Ré beach are in red circles). In collaboration with GLADYS, LEGOS, LIENSs universities

THANK YOU !