
JERICO-S3 integrated innovative technologies for coastal monitoring

Eric Delory, Simone Marini, Jérôme Blandin, Catherine Boccadoro, Dominique Durand, Andrés Cianca, Joaquin Tintore, Jay Pearlman, Miguel Charcos, Miguel Ángel Alcalde, Juan Gabriel Fernandez, Laurent Delauney

JERICO RI

JERICO-RI is an integrated pan-European **multidisciplinary** and **multi-platform research infrastructure** dedicated to a holistic appraisal of **coastal** marine system changes.

It aims to seamlessly bridge existing continental, atmospheric and open ocean RIs, thus **filling a key gap in the ESFRI landscape**. JERICO-RI establishes the framework upon which coastal marine systems are observed, analysed, understood and forecasted.

JERICO-RI aims to enable **open-access** to state-of-the-art and innovative facilities, resources, FAIR data and fit-forpurpose services, fostering **international science collaboration**.

Jerico-S3 technological innovation objectives

Progress in in-situ sensor and platform innovations to enable interoperability, multisensing, higher spatio-temporal resolution

Assess and demonstrate advances in artificial intelligence for adaptive sampling

Improve our capacity to cover EOVs and support coastal policies (EU, National)

Make resources (FAIRly) accessible, from data to methods and services, from a unified web-based platform

Perform an end-to-end demonstration at test and regional JERICO RI site

Build on existing capacities and latest developments in EU projects

From Science and EOVs to end-to-end demonstration of sensor system

Science Strategy - Coastal Variables for JERICO-RI

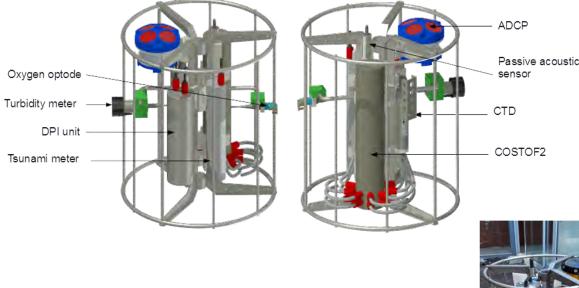
cEOV: Generic Variables Region/site/challenge - Specific Variables

Generic and Specific sensor packages

Plankton dynamics sensor package - PdSP Autonomous Coastal Observing Benthic Station – ACOBS Coastal EGIM

Assessment of AI potential for self-awareness

Adaptive sampling through embedded processing Autonomous sensor control and configuration

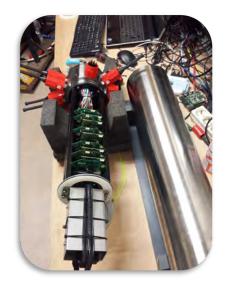


Demonstration

Design, build, test and demonstrate a coastal EGIM FAIRness from e-JERICO infrastructure

EGIM and drivers

Manufacturer	Model	Type or mesurands	
AANDERAA	3830	38300 ₂ , T	
AANDERAA	43300 ₂ , T		
AIRMAR	WS200	Weather station	
AXIS	Q1765	HD video camera (1080p)	
AXIS	Q1798	HD video camera (4k)	
BBE	Fluoroprobe	Chloropyll	
CONTROS	HydroC	СН ₄ , Т	
DLINK	DCS7010L	Video camera (720p)	
GILL	MaxiMet GMX500	Weather station	
GÜRALP	CMG-3ESPD	Ocean Bottom Seismometer	
IFREMER	Calmar	Benthic chamber with water sampling	
IFREMER	Chemini Fer	Iron	
IFREMER	Chlorinator	Chlorine generator (actuator)	
IFREMER	CISICS	T, Water sampler	
IFREMER	Thermistor chain	Chain of 100 temperature sensors	
IPGP	OBS	Ocean Bottom Seismometer	
IUEM	pCO ₂	pCO _{2 (surface)}	
LEICA	GR25	Geodetic GPS	
MAXIM	DS18B20	T (1 wire thermistor)	
McMURDO	Kanaton3	Automatic Identification System	
NKE	MP6	T, pH, CTD, 0₂, Chlorophyll	
NORTEK	Awac	ADCP	
OCEANSONICS	icListen	Hydrophone	
PAROSCIENTIFIC	8CB	Absolute pressure gauge	
RDI	Workhorse	ADCP	
SATLANTIC	PAR	Photosynthetically Active Radiation	
SEABIRD	Hydrocat	CTD, 0 ₂	
SEABIRD	SBE37	СТD	
SEABIRD	SBE54	Absolute pressure gauge	
SEABIRD	SeapHOx	CTD, pH, O₂	
UNISENSE	MP4-8	Mini/micro-profiler	
University of Washington	BARS	Chlorinity, T	
WETLABS (SEABIRD)	ECO-NTU	Turbidity	
	200 1110	,	


COSTOF2 Services


Energy management, Communication with the external world, Measurement sequencing and local data storage, Precision time stamping Data pre-processing, likely to generate alerts Protection against biofouling.

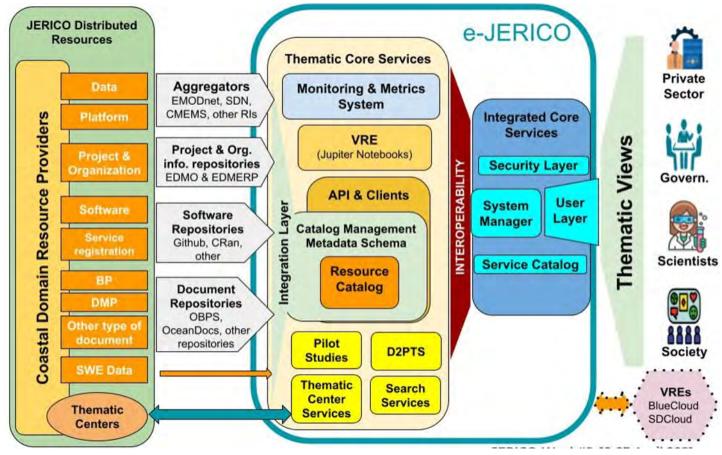
Technical specifications

12 sensor ports, Ethernet, Serial (RS232,RS485) and 1-wire data links, 12V-24VDC (optional 48VDC), 3A power outputs, Digital IO, PWM outputs, analogical inputs, Autonomous and cabled modes, FTP, HTTP servers, remote serial port (transparent mode), Modems management (acoustic, inductive, satellite 4G,...), Underwater WIFI link (configuration, data retrieval), Ultra low power consumption (0.5mW sleep mode with TCX0) Time stamping (TCXO, optional atomic clock), Sensor synchronization (NMEA, PPS - TTL or RS485), Data storage on µSD and back up on SSD, Active protection against fouling (seawater electro-chlorination), Sensor Software Development kit Integration of Sensor ML generic driver (Work in process) Technical data monitoring (Energy, voltage, current, temperature, pressure, pitch, tilt, roll, storage capacity, water intrusion detection), Housing: Titanium (optional material available).

From EGIM to cEGIM, and plankton dynamics

6000m depth rated -> 200m rated (lower-cost, broader EOV coverage)

Improved interoperability


Processing capacity for enhanced autonomy

Extension to BGC and Biology (demo: Pelagic plankton dynamics)

-> sensors

Physics	Biogeochemistry	Biology	Other - required
1 CTD (EGIM)	4 Optode-O2 (EGIM)	9 Chl-a – or	14 Processing module
2 ADCP (EGIM)	5 pCO2 sensor	10 Spectrofluorometer	15 Chlorinator for optical
3 Turbidity (EGIM)	6 pH sensor	(Chl-a, PC, PE, Fuco)	sensors (EGIM)
Hydrophone (EGIM)	7 Nutrient sensor (NO3, +)	11 Flow cytometer (pico,	
Tsunami-meter (EGIM)	8 Fluorometer (CDOM)	nano, micro phytoplankton)	High TRL Required
		12 UVP (Zooplankton size)	EU OoT projects (TRL7 min,
`		13 FRRF (Primary	NeXOS, Senseocean, etc.)
JERICO ₅₃		production)	Jerico-Next developments

Commercial sensors

Next steps


- Select best site and sensors for demonstration
- Develop drivers for BGC and biological sensors
- Implement data and sensor interoperability standards
- Deploy JERICO virtual access platform
- Start integrating existing and new sensor and data services

Acknowledgments: Jerico-S3 WP1-3-4-5 leads and the WP7 team

Thanks!

Contact: eric.delory@plocan.eu Jerico RI & S3 website: https://www.jerico-ri.eu

ΓΠ\/ΔR

