Optimization of a coastal circulation model by 4DVAR estimation of uncertain parameters using HF radar, tide gauge and ADCP observations

Schulz-Stellenfleth, J.¹, S., Foerderreuther², J. Horstmann¹, J. Staneva¹

1) Helmholtz Zentrum Hereon, Institute of Coastal Systems - Analysis and Modelling, Institute of Coastal Ocean Dynamics, Geesthacht, Germany

2) Bundesamt für Seeschifffahrt und Hydrographie (BSH), Hamburg, Germany

What

 Optimise uncertain parameters in a 3D circulation model of the German Bight using a combination of current and water level measurements

How

- Use a 4DVAR approach based on an adjoint model in combination with HF-radar, ADCP and tide gauge measurements
- Use operational BSH model as a reference

Used Measurements in German Bight

- Three HF-radar WERA
 stations
- Two ADCPs
- Three tide gauges
- Tuning for May 2015
- Testing for June 2015

3 05.05.2021 Optimization of a coastal circulation model

3D IMCO circulation model

- Primitive equation barotropic 3D circulation model
- Adjoint code was implemented
- Setup for German Bight mimics operational setup used at BSH, i.e.
 - 1km resolution bathymetry
 - same meteo forcing
 - same open boundary forcing

Which uncertain parameters are optimised?

- 1. Bottom roughness length scale z_0
- 2. Background momentum diffusion parameter
- 3. The water depth H
- 4. The turbulence length scale parameter
- 5. The horizontal diffusion coefficient
- 6. The wind drag coefficient
- 7. Amplitude and phase corrections of the open boundary forcing both with regard to the tidal and surge component

Comparisons with Tide gauge and ADCP data

Tide gauge	RMS Tuning [m]		RMS Testing [m]	
	BSH	4DVAR	BSH	4DVAR
Hvide	0.13	0.08	0.16	0.10
Helgoland	0.17	0.11	0.19	0.14
Cuxhaven	0.24	0.11	0.25	0.11

Comparisons with HF radar surface currents

Wangerooge

05.05.2021

7

Optimization of a coastal circulation model

0.103

0.091

0.087

0.100

Helmholtz-Zentrum

hereon

Comparison with drifter data in June 2015

Drifter	BSH rms u/v [m/s]	4DVAR_VAR u/v rms [m/s]	4DVAR_CON u/v rms [m/s]
1	0.155/0.167	0.213/0.196	0.299/0.202
5	0.070/0.088	0.084/0.106	0.096/0.122
6	0.084/0.101	0.089/0.103	0.090/0.105
7	0.188/0.128	0.166/0.151	0.167/0.171
8	0.083/0.100	0.078/0.093	0.081/0.095
9	0.160/0.213	0.166/0.146	0.161/0.140

8 05.05.2021 Optimization of a coastal circulation model

55.5°N

55°N

54.5°N

54°N

6°E

Optimised model parameters

Optimization of a coastal circulation model 9 05.05.2021

 κ_b

Summary/Conclusion

- 4DVAR approach was successfull in optimising model parameters in a 3D circulation model of the German Bight
- The agreement with most observations was improved at least for a 1 month test period compared to operational BSH model
- Combination of HF radar, ADCP and tide gauge data can be recommended to get consistent picture of 3D circulation
- Still some work to do to include baroclinic part into 4DVAR

