GCOAST regional ocean predicting system: impact of coupling of waves, circulation and atmosphere models

Joanna Staneva &

Corinna Schrum & GCOAST Team

9th EuroGOOS International Conference

3 May 2021 - 5 May 2021

ADVANCES IN OPERATIONAL OCEANOGRAPHY: EXPANDING EUROPE'S OCEAN OBSERVING AND

Relevance of atmosphere-ocean-wave coupling for coastal predictions

- Increased interest in reducing prediction errors of state estimates
- Study the impact of interaction processes
- Substantial effects also on mean fields -energy and momentum transfer
- Extreme weather events in the marine realm

GCOAST Modell system

Coupled Model Setup

	NEMO 3.6	WAM 4.6.5	COSMO-CCLM	
Horizontal grid	3.5 km covering North Sea and Baltic Sea, 900 m German bight	Same	7 km covering NW European seas	Atm
Vertical grid	56 s layers, emphasis on surface	N/A	55 levels	Wa v Ocn
Initial field	CMEMS UKMO Data	EWAM wave data	COSMO-EU Model	
Boundary condition	OSU tides, CMEMS UKMO Data for T,S, u,v, SLH	EWAM wave data	ERA-5 data	657N
Forcing	DWD, ERA-I, ERA-5, COSMO	Same	ERA-5 Boundary data	
Vertical diffusion scheme	GLS (<i>k-eps</i>)	N/A		50°N 65°N
Ice	LIM-3	WAM ice	NA	20"W 15"W 10"W 5"W 0" 5"E 10"E 15"E 20"E 25"E X

GCOAST Modell system

External Forcing

MSLP, 10m wind speed, surface roughness

diffenrence [m/s]

0

-1 paads

wind

diffenrence [m]

ghne -0.005

no.

-0.01

-0.015 estimation -0.02

55°N

50⁰N

12°W

- Low pressure system between Island and Norway60°N •
- Secondary low around Oslo ٠
- Reduced pressure gradient ٠
- Enhanced surface roughness
- Reduced wind speed

Wiese et al. (2019)

36°E

12°E

24°E

7

Waves extract energy and momentum from the atmosphere. The effect is largest for young sea states and high wind speeds.

Impact on HiRes forecast wind and

mean hs	Hel:1.95		Fino-1:1.42		Wes: 1.63	
	1-way	2-way	1-way	2-way	1-way	2-way
bias hs [m]	-0.14	-0.03	-0.07	-0.01	-0.13	-0.03

Staneva et al., (2021) Wiese et al., /(019)

Ocn

Wa

Impact on sea level predictions

Impact on surge and coastal ocean forecasting (Staneva et al. 2017, 2021)

95th Percentile SLE (2009-2019) Coupled – Uncoupled Absolut and Relative differences

hereon

Positive (negative) differences show that surge is larger (smalle due to wave-coupling Bonaduche et al. (2020)

Impact of coupling – T&S

Impact of coupling on circulation and drifter modelling

Staneva, J.; Ricker, M.; Carrasco Alvarez, R.; Breivik, Ø.; Schrum, C (2021). Effects of Wave-Induced.Processes in a Coupled Wave-Ocean Model on Particle Transport Simulations https://doi.org/10.3390/w13040415

Velocity at different levels

- A coupled WAM-COSMO-NEMO model has been implemented for the NE Atlantic, North Sea and Baltic Sea and new parameterizations tested.
- Coupling of COSMO-WAM-NEMO showed better agreement with observations during extremes, especially in the coastal areas
- Effects of considering sea state and introducing wave-induced forcing on simulated temperature are not negligible and the skill has been improved.
- Storm surge, circulation, drifter simulations of the coupled model showed better agreement with observations that the stand-alone NEMO.
- Paves the road to more realistic simulations in both operational forecasting systems and climate studies

COSYNA System

Thank you for your attention!

Publications:

- Staneva, J.; Ricker, M.; Carrasco Alvarez, R.; Breivik, Ø.; Schrum, C (2021). Effects of Wave-Induced.Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations. Water, 13, 415. https://doi.org/10.3390/w13040415
- Staneva J.,.S. Grayek, A. Behrens and H..Günther (2021): GCOAST: Skill assessments of coupling wave and circulation models (NEMO-WAM). Journal of Physics: Conference Series, Vol. 1730, 01207I, doi:10.1088/1742-6596/1730/1/012071
- Fenoglio, L., Dinardo, S., Uebbing, B., Buchhaupt, C., Gärtner, M., Staneva, J., Becker, M., Klos, A., Kusche, J., Advances in NE-Atlantic Coastal Sea Level Change Monitoring by Delay Doppler Altimetry, (2021), Advances in Space Research, doi: https://doi.org/10.1016/j.asr.2020.10.041
- Ho-Hagemann, H.T.M., Hagemann, S., Grayek, S., Petrik, R., Rockel, B., Staneva, J., Feser, F., & Schrum, C. (2020): Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI. Atmosphere 2020, 11, 227, doi:10.3390/atmos11030227
- Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., & Breivik, Ø. (2020): Sea-state contributions to sea-level variability in the European Seas. Ocean Dynamics, doi:10.1007/s10236-020-01404-1
- Wiese, A., Staneva, J., Ho-Hagemann, H.T.M., Grayek, S., Koch, W., & Schrum, C. (2020): Internal Model Variability of Ensemble Simulations With a Regional Coupled Wave-Atmosphere Model GCOAST. Front. Mar. Sci. 7:596843, doi:10.3389/fmars.2020.596843
- Wiese, A., Stanev, E., Koch, W., Behrens, A., Geyer, B., & Staneva, J. (2019): The Impact of the Two-Way Coupling between Wind Wave and Atmospheric Models on the Lower Atmosphere over the North Sea. Atmosphere 2019, 10, 386, doi:10.3390/atmos10070386
- Alari V, Staneva J, Breivik O, Bidlot JR, Mogensen K and Janssen PAEM (2016). Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dynamics, DOI 10.1007/s10236-016-0963-x
- Staneva J., Alari V., Breivik O, Bidlot J.-R. and Mogensen K., (2017). Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynamics, DOI 10.1007/s10236-016-1009-0
- Staneva J, Wahle K, Koch W, Behrens A, Fenoglio-Marc L., and Stanev E., (2016). Coastal flooding: impact of waves on storm surge during extremes a case study for the German Bight, Nat. Hazards Earth Syst. Sci., 16, 2373-2389, doi:10.5194/nhess-16-2373-2016
- Wahle K., Staneva J, Koch W., Fenoglio-Marc L., Ho-Hagemann H., and Stanev E. (2016). An atmosphere-wave regional coupled model: improving predictions of wave heights and surface winds in the Southern North Sea. Ocean Sci. Discuss., doi:10.5194/os-2016-51, 2016